Rutgers University: Real Variables and Elementary Point-Set Topology Qualifying Exam August 2014: Problem 1 Solution

Exercise. Let A be a subset of [0, 1]. Let m^+ be Lebesgue outer measure on [0, 1].

(a) State the definition of "Lebesgue measurable set".

Solution. *A* is **Lebesgue measurable** if $\forall E \in \mathcal{P}(\mathbb{R})$, $m^*(E) = m^*(E \cap A) + m^*(E \cap A^C)$

(b) Show that A is Lebesgue measurable if and only if

$$m^*(A) + m^*(A^C) = 1,$$

where A^C is the complement of A in [0, 1].

Solution. (\Longrightarrow) If A is Lebesgue measurable then $m^*(A) + m^*(A^C) = m^*(A \cap [0, 1]) + m^*(A^C \cap [0, 1])$ $= m^*([0,1])$ since A Leb. measurable = 1(\Leftarrow)Let m^* be an outer measure on X. If $E \subset X$, define $m_*(E) = m_0(X) - m^*(E)$, where m_0 is the inner measure. Then E is m^* -measurable $\iff m^*(E) = m_*(E)$. $m_*(A) = m([0, 1]) - m^*(A^C)$ $m_*(A) + m * (A^C) = 1$ \implies $m^*(A) + m^*(A^C) = 1$ (Given) and $m^*(A) = m_*(A)$ \Longrightarrow A is m^* – measurable. \implies